占卜算命
规划人生

flac蠕变计算命令流

flac如何模拟蠕变

FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。 FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。 三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形。它包含10种弹塑性材料本构模型,有静力、动力、蠕变、渗流、温度五种计算模式,各种模式间可以互相藕合,可以模拟多种结构形式,如岩体、土体或其他材料实体,梁、锚元、桩、壳以及人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩、界面单元等,可以模拟复杂的岩土工程或力学问题。

FLAC3D采用ANSI C++语言编写的。 FLAC3D有以下几个优点: 1 对模拟塑性破坏和塑性流动采用的是“混合离散法“。

这种方法比有限元法中通常采用的“离散集成法“更为准确、合理。 2 即使模拟的系统是静态的,仍采用了动态运动方程,这使得FLAC3D在模拟物理上的不稳定过程不存在数值上的障碍。

3 采用了一个“显式解“方案。因此,显式解方案对非线性的应力-应变关系的求解所花费的时间,几互与线性本构关系相同,而隐式求解方案将会花费较长的时间求解非线性问题。

面且,它没有必要存储刚度矩阵,这就意味着, 采用中等容量的内存可以求解多单元结构; 模拟大变形问题几互并不比小变形问题多消耗更多的计算时间,因为没有任何刚度矩阵要被修改。 当然,它存在以下几个不足之处: 1 对于线性问题的求解,FLAC3D比其他有限元程序运行得要慢;但是,当进行大变形非线性问题或模拟实际可能出现不稳定问题时,FLAC3D是最有效的工具。

2 用FLAC3D求解时间取决于最长的自然周期和最短的自然周期之比。 FLAC3D中的网格生成器gen,通过匹配、连接由网格生成器生成局部网格,能够方便地生成所需要的三维结构网格。

还可以自动产生交岔结构网格(比如说相交的巷道),三维网格由整体坐标系x,y,z系统所确定,这就提供了比较灵活的产生和定义三维空间参数。 有五种计算模式 (l)静力模式。

这是FLAC-3D默认模式,通过动态松弛方法得静态解。 (2)动力模式。

用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件,边界可以固定边界和自由边界。动力计算可以与渗流问题相藕合。

(3)蠕变模式。有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型。

(4)渗流模式。可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合。

渗流服从各向同性达西定律,流体和孔隙介质均被看作可变形体。考虑非稳定流,将稳定流看作是非稳定流的特例。

边界条件可以是固定孔隙压力或恒定流,可以模拟水源或深井。渗流计算可以与静力、动力或温度计算耦合,也可以单独计算。

(5)温度模式。可以模拟材料中的瞬态热传导以及温度应力。

温度计算可以与静力、动力或渗流计算藕合,也可单独计算。可以模拟多种结。

flac如何模拟蠕变

FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。 FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。 三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形。它包含10种弹塑性材料本构模型,有静力、动力、蠕变、渗流、温度五种计算模式,各种模式间可以互相藕合,可以模拟多种结构形式,如岩体、土体或其他材料实体,梁、锚元、桩、壳以及人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩、界面单元等,可以模拟复杂的岩土工程或力学问题。

FLAC3D采用ANSI C++语言编写的。 FLAC3D有以下几个优点: 1 对模拟塑性破坏和塑性流动采用的是“混合离散法“。

这种方法比有限元法中通常采用的“离散集成法“更为准确、合理。 2 即使模拟的系统是静态的,仍采用了动态运动方程,这使得FLAC3D在模拟物理上的不稳定过程不存在数值上的障碍。

3 采用了一个“显式解“方案。因此,显式解方案对非线性的应力-应变关系的求解所花费的时间,几互与线性本构关系相同,而隐式求解方案将会花费较长的时间求解非线性问题。

面且,它没有必要存储刚度矩阵,这就意味着, 采用中等容量的内存可以求解多单元结构; 模拟大变形问题几互并不比小变形问题多消耗更多的计算时间,因为没有任何刚度矩阵要被修改。 当然,它存在以下几个不足之处: 1 对于线性问题的求解,FLAC3D比其他有限元程序运行得要慢;但是,当进行大变形非线性问题或模拟实际可能出现不稳定问题时,FLAC3D是最有效的工具。

2 用FLAC3D求解时间取决于最长的自然周期和最短的自然周期之比。 FLAC3D中的网格生成器gen,通过匹配、连接由网格生成器生成局部网格,能够方便地生成所需要的三维结构网格。

还可以自动产生交岔结构网格(比如说相交的巷道),三维网格由整体坐标系x,y,z系统所确定,这就提供了比较灵活的产生和定义三维空间参数。 有五种计算模式 (l)静力模式。

这是FLAC-3D默认模式,通过动态松弛方法得静态解。 (2)动力模式。

用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件,边界可以固定边界和自由边界。动力计算可以与渗流问题相藕合。

(3)蠕变模式。有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型。

(4)渗流模式。可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合。

渗流服从各向同性达西定律,流体和孔隙介质均被看作可变形体。考虑非稳定流,将稳定流看作是非稳定流的特例。

边界条件可以是固定孔隙压力或恒定流,可以模拟水源或深井。渗流计算可以与静力、动力或温度计算耦合,也可以单独计算。

(5)温度模式。可以模拟材料中的瞬态热传导以及温度应力。

温度计算可以与静力、动力或渗流计算藕合,也可单独计算。可以模拟多种结构。

列车动荷载施加命令流flac3d

首先,您这个问题我不回答没有人会回答的,Flac3D不容易学。关于列出荷载,一般有两个方式输入动荷载:第一,就是有规律的,比如波,正弦之类的,用一个fish命令写出来,进行apply即可;第二,可能是实实在在的监控的,没有什么规律,那么可以写一个table,然后read即可。具体情况请看Flac3D教程(马云宝,不是猫咪哟就有看到),本方法参考来自都安国际的Flac3D教程视频,谢谢采纳最+哟,谢谢。

udec 命令流窗口在哪里

UDEC是Universal Distinct Element Code的缩写,即通用离散单元法程序,顾名思义,UDEC是一款基于离散单元法理论的一款计算分析程序。离散单元法最早由Peter Cundall在1971年提出理论雏形,最初意图是在二维空间描述离散介质的力学行为,Cundall等人在1980年开始又把这一方法思想拓展到研究颗粒状物质的微破裂、破裂扩展、和颗粒流动问题。 物理介质通常均呈现不连续特征,这里的不连续性可以表现为材料属性的不连续、或空间结构(构造)上的不连续。以岩体为例,具有不同岩性属性的岩块(连续体)和结构面(非连续特征)构成岩体最基本的两个组成要素,与有限元技术、FLAC/FLAC3D等通用连续力学方法相比较,属于非连续力学方法范畴的UDEC程序基于离散的角度来对待物理介质,以最为朴素的思想分别描述介质内的连续性元素和非连续性元素,如将岩体的两个基本组成对象—岩块和结构面分别以连续力学定律和接触定律加以描述,其中接触(结构面)是连续体(岩块)的边界,单个的连续体在进行力学求解过程中可以被处理成独立对象并通过接触与其他连续体发生相互作用,其中连续体可具有可变形、或刚性受力变形特征。具体到具备可变形能力的单个连续体分析环节而言,介质受力变形求解方法完全遵从FLAC/FLAC3D快速拉格朗日定律(请参考FLAC/FLAC3D程序概况了解详情)。具体的,UDEC程序对于物理介质的力学描述手段可以通俗说明为:

⒈宏观物理介质绝非理论意义上的连续体(如,岩体=岩块+结构面),UDEC以朴素的思想遵循这一自然规律,将其视为连续性特征(如岩块)、和非连续特征(如结构面)两个基本元素的集合统一体,并以成熟力学定律分别定义这些基本元素的受力变形行为;

⒉UDEC采用凸多边形来描述介质中连续性对象元素(如岩块)的空间形态,并通过若干凸多边形组合表达现实存在的凹形连续性对象,此外,非连续性特征(如结构面)则以折线段加以表征;

⒊表征连续性特征对象的凸多边形可以服从可变形、或刚性受力变形定律,如为可变形体,则采用与FLAC/FLAC3D完全一致的快速拉格朗日方案进行求解,如“网格群模型”。连续性特征对象之间通过边界(非连续特征)实现相互作用,描述边界的折线段受力变形可遵从多种荷载—变形力学定律(即接触定律),力学定律可以模拟凸多边形之间在公共边界处相互滑动或脱开行为;

⒋在某些极端情形下,如理想地将物理介质看待为完全连续体,此时UDEC程序可蜕化为FLAC/FLAC3D等连续力学描述手段,只描述连续性对象即可。

转载请注明出处占卜算命 » flac蠕变计算命令流

分享: